Durring Searle's experiment, zero of the Vernier scale lies between $3.20 \times 10^{-2} m$ and $3.25 \times 10^{-2} m$ of the main scale. The $20^{\text {th }}$ division of the Vernier scale exactly coincides with one of the main scale divisions. When an additional load of $2 \ kg$ is applied to the wire, the zero of the Vernier scale still lies between $3.20 \times 10^{-2} m$ and $3.25 \times 10^{-2} m$ of the main scale but now the $45^{\text {th }}$ division of Vernier scale coincides with one of the main scale divisions. The length of the thin metallic wire is $2 m$. and its cross-sectional area is $8 \times 10^{-7} m ^2$. The least count of the Vernier scale is $1.0 \times 10^{-5} m$. The maximum percentage error in the Young's modulus of the wire is
$8$
$7$
$6$
$5$
The density of a cube is measured by measuring its mass and the length of its sides. If the maximum error in the measurement of mass and length are $3\%$ and $2\%$ respectively, then find the maximum error in the measurement of the density of cube.......... $\%$
Two resistors ${R}_{1}=(4 \pm 0.8) \Omega$ and ${R}_{2}=(4 \pm 0.4)$ $\Omega$ are connected in parallel. The equivalent resistance of their parallel combination will be
In an experiment, the following observation's were recorded : $L = 2.820\, m, M = 3.00 \,kg, l = 0.087 \,cm$, Diameter $D = 0.041 \,cm$ Taking $g = 9.81$ $m/{s^2}$ using the formula , $Y=\frac{{4MgL}}{{\pi {D^2}l}}$, the maximum permissible error in $Y$ is ......... $\%$
An optical bench has $1.5 m$ long scale having four equal divisions in each $cm$. While measuring the focal length of a convex lens, the lens is kept at $75 cm$ mark of the scale and the object pin is kept at $45 cm$ mark. The image of the object pin on the other side of the lens overlaps with image pin that is kept at $135 cm$ mark. In this experiment, the percentage error in the measurement of the focal length of the lens is. . . . .
The following observations were taken for determining surface tension $T$ of water by capillary method:
diameter of capillary, $D= 1.25 \times 10^{-2}\; m$
rise of water, $h=1.45 \times 10^{-2}\; m $
Using $g= 9.80 \;m/s^2$ and the simplified relation $T = \frac{{rhg}}{2}\times 10^3 N/m$ , the possible error in surface tension is ........... $\%$