If the truth value of the statement $p \to \left( { \sim q \vee r} \right)$ is false $(F)$, then the truth values of the statement $p, q, r$ are respectively

  • [JEE MAIN 2019]
  • A

    $T, T, F$

  • B

    $F, T, T$

  • C

    $T, F, T$

  • D

    $T, F, F$

Similar Questions

Statement $-1$ : The statement $A \to (B \to A)$ is equivalent to $A \to \left( {A \vee B} \right)$.

Statement $-2$ : The statement $ \sim \left[ {\left( {A \wedge B} \right) \to \left( { \sim A \vee B} \right)} \right]$ is a Tautology

  • [JEE MAIN 2013]

The statement $[(p \wedge  q) \rightarrow p] \rightarrow (q \wedge  \sim q)$ is

If $p$ and $q$ are simple propositions, then $p \Leftrightarrow \sim \,q$ is true when

The contrapositive of the statement “If you are born in India, then you are a citizen of India”, is

  • [JEE MAIN 2019]

Let $p , q , r$ be three logical statements. Consider the compound statements $S _{1}:((\sim p ) \vee q ) \vee((\sim p ) \vee r ) \text { and }$ and $S _{2}: p \rightarrow( q \vee r )$ Then, which of the following is NOT true$?$

  • [JEE MAIN 2022]