If the truth value of the statement $p \to \left( { \sim q \vee r} \right)$ is false $(F)$, then the truth values of the statement $p, q, r$ are respectively
$T, T, F$
$F, T, T$
$T, F, T$
$T, F, F$
Statement $-1$ : The statement $A \to (B \to A)$ is equivalent to $A \to \left( {A \vee B} \right)$.
Statement $-2$ : The statement $ \sim \left[ {\left( {A \wedge B} \right) \to \left( { \sim A \vee B} \right)} \right]$ is a Tautology
The statement $[(p \wedge q) \rightarrow p] \rightarrow (q \wedge \sim q)$ is
If $p$ and $q$ are simple propositions, then $p \Leftrightarrow \sim \,q$ is true when
The contrapositive of the statement “If you are born in India, then you are a citizen of India”, is
Let $p , q , r$ be three logical statements. Consider the compound statements $S _{1}:((\sim p ) \vee q ) \vee((\sim p ) \vee r ) \text { and }$ and $S _{2}: p \rightarrow( q \vee r )$ Then, which of the following is NOT true$?$