If $p$ and $q$ are simple propositions, then $p \Leftrightarrow \sim \,q$ is true when
$p$ is true and $q$ is true
Both $p$ and $q$ are false
$p$ is false and $q$ is true
None of these
Statement$-I :$ $\sim (p\leftrightarrow q)$ is equivalent to $(p\wedge \sim q)\vee \sim (p\vee \sim q) .$
Statement$-II :$ $p\rightarrow (p\rightarrow q)$ is a tautology.
Which of the following is not a statement
Which of the following is always true
If $\left( {p \wedge \sim q} \right) \wedge \left( {p \wedge r} \right) \to \sim p \vee q$ is false, then the truth values of $p, q$ and $r$ are respectively
Consider the following three statements :
$(A)$ If $3+3=7$ then $4+3=8$.
$(B)$ If $5+3=8$ then earth is flat.
$(C)$ If both $(A)$ and $(B)$ are true then $5+6=17$. Then, which of the following statements is correct?