If the tangents on the ellipse $4x^2 + y^2 = 8$ at the points $(1, 2)$ and $(a, b)$ are perpendicular to each other, then $a^2$ is equal to
$\frac{2}{{17}}$
$\frac{4}{{17}}$
$\frac{64}{{17}}$
$\frac{128}{{17}}$
If the length of the major axis of an ellipse is three times the length of its minor axis, then its eccentricity is
Minimum distance between two points $P$ and $Q$ on the ellipse $\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{4} = 1$ , if difference between eccentric angles of $P$ and $Q$ is $\frac{{3\pi }}{2}$ , is
The eccentricity of the ellipse $\frac{{{{(x - 1)}^2}}}{9} + \frac{{{{(y + 1)}^2}}}{{25}} = 1$ is
Let the tangents at the points $P$ and $Q$ on the ellipse $\frac{x^{2}}{2}+\frac{y^{2}}{4}=1$ meet at the point $R(\sqrt{2}, 2 \sqrt{2}-2)$. If $S$ is the focus of the ellipse on its negative major axis, then $SP ^{2}+ SQ ^{2}$ is equal to.
The eccentric angles of the extremities of latus recta of the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ are given by