Minimum distance between two points $P$ and $Q$ on the ellipse $\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{4} = 1$ , if difference between eccentric angles of $P$ and $Q$ is $\frac{{3\pi }}{2}$ , is

  • A

    $2\sqrt 2 $

  • B

    $2\sqrt 5 $

  • C

    $\sqrt {29} $

  • D

    $\sqrt {62} $

Similar Questions

Find the equation for the ellipse that satisfies the given conditions: Centre at $(0,\,0),$ major axis on the $y-$ axis and passes through the points $(3,\,2)$ and $(1,\,6)$

Suppose that the foci of the ellipse $\frac{x^2}{9}+\frac{y^2}{5}=1$ are $\left(f_1, 0\right)$ and $\left(f_2, 0\right)$ where $f_1>0$ and $f_2<0$. Let $P _1$ and $P _2$ be two parabolas with a common vertex at $(0,0)$ and with foci at $\left(f_1, 0\right)$ and $\left(2 f_2, 0\right)$, respectively. Let $T_1$ be a tangent to $P_1$ which passes through $\left(2 f_2, 0\right)$ and $T_2$ be a tangent to $P_2$ which passes through $\left(f_1, 0\right)$. The $m_1$ is the slope of $T_1$ and $m_2$ is the slope of $T_2$, then the value of $\left(\frac{1}{m^2}+m_2^2\right)$ is

  • [IIT 2015]

An ellipse with its minor and major axis parallel to the coordinate axes passes through $(0,0),(1,0)$ and $(0,2)$. One of its foci lies on the $Y$-axis. The eccentricity of the ellipse is

  • [KVPY 2017]

On the ellipse $4{x^2} + 9{y^2} = 1$, the points at which the tangents are parallel to the line $8x = 9y$ are

  • [IIT 1999]

The equation $\frac{{{x^2}}}{{2 - r}} + \frac{{{y^2}}}{{r - 5}} + 1 = 0$ represents an ellipse, if