यदि दीर्घवृत्त $\frac{x^{2}}{27}+\frac{y^{2}}{3}=1$ के एक बिंदु पर खींची गई स्पर्श रेखा, निर्देशांक अक्षों को $A$ तथा $B$ पर मिलती है तथा $O$ मूल बिंदु है, तो त्रिभुज $OAB$ का न्यूनतम क्षेत्रफल (वर्ग इकाइयों में) है

  • [JEE MAIN 2016]
  • A

    $3\sqrt 3$

  • B

    $\frac {9}{2}$

  • C

    $9$

  • D

    $\frac {9}{\sqrt 3}$

Similar Questions

दीर्घवृत्त $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ के नाभियों और शीर्षों के निर्देशांक, दीर्घ एव लघु अक्ष की लंबाइयाँ, उत्केंद्रता और नाभिलंब जीवा की लंबाई ज्ञात कीजिए

यदि रेखा $y = 2x + c$ दीर्घवृत्त  $\frac{{{x^2}}}{8} + \frac{{{y^2}}}{4} = 1$ को स्पर्श करती है, तो $c = $

दीर्घवृत्त  $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के नाभिलम्ब के सिरों के उत्केन्द्र कोण हैं

यदि दीर्घवत्त $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ तथा वत्त $x^{2}+y^{2}=4 b$, $b >4$ के प्रतिच्छेदन बिन्दु वक्र $y ^{2}=3 x ^{2}$ पर स्थित हैं, तो $b$ बराबर है

  • [JEE MAIN 2021]

यदि दीर्घवृत्त $x ^{2}+2 y ^{2}=2$ के चार शीर्षो के अतिरिक्त इसके सभी बिन्दुओं पर स्पर्श रेखायें खींची गई हैं, तो इन स्पर्श रेखाओं के निर्देशांक अक्षों के बीच के अंतः खंडों के मध्य बिन्दु निम्न में से किस वक्र पर है 

  • [JEE MAIN 2019]