यदि रैखिक समीकरण निकाय $x + y + z =5$, $x +2 y +2 z =6$, $x +3 y +\lambda z =\mu,(\lambda, \mu \in R )$ के अनन्त हल है, तो $\lambda+\mu$ का मान है
$12$
$7$
$10$
$9$
माना कि $\alpha, \beta$ एवं $\gamma$ वास्तविक संख्याएं (real numbers) हैं। निम्न रैखिक समीकरण निकाय (system of linear equations) पर विचार कीजिए।
$x+2 y+z=7$
$x+\alpha z=11$
$2 x-3 y+\beta z=\gamma$
List-$I$ की प्रत्येक प्रविष्टि (entry) का List-$II$ की सही प्रविष्टियों (entries) से मिलान कीजिये।
List - $I$ | List - $II$ |
($P$)यदि $\beta=\frac{1}{2}(7 \alpha-3)$ एवं $\gamma=28$, तब निकाय का(के) | ($1$) क अद्वितीय हल (unique solution) है |
($Q$)यदि $\beta=\frac{1}{2}(7 \alpha-3)$ एवं $\gamma \neq 28$, तब निकाय का(के) | ($2$)कोई हल नहीं है |
($R$) Iयदि $\beta \neq \frac{1}{2}(7 \alpha-3)$ जहाँ $\alpha=1$ एवं $\gamma \neq 28$, तब निकाय का(के) |
($3$)अनंत हल हैं |
($S$) यदि $\beta \neq \frac{1}{2}(7 \alpha-3)$ जहाँ $\alpha=1$ एवं $\gamma=28$, तब निकाय का(के) | ($4$) $x=11, y=-2$ एवं $z=0$ एक हल है |
($5$) $x=-15, y=4$ एवं $z=0$ एक हल है |
सही विकल्प है:
सारणिक $\left| {{\rm{ }}\begin{array}{*{20}{c}}1&2&3\\3&5&7\\8&{14}&{20}\end{array}} \right|$ का मान होगा
निम्नलिखित में दिए गए शीर्ष बिंदुओं वाले त्रिभुजों का क्षेत्रफल ज्ञात कीजिए।: $(2,7),(1,1),(10,8)$
माना समीकरण निकाय $x+2 y+3 z=5$, $2 \mathrm{x}+3 \mathrm{y}+\mathrm{z}=9,4 \mathrm{x}+3 \mathrm{y}+\lambda \mathrm{z}=\mu$ के अनंत हल है। तो $\lambda+2 \mu$ बराबर है :
यदि समीकरण निकाय $2 x+3 y-z=5$ ; $x+\alpha y+3 z=-4$ ; $3 x-y+\beta z=7$के अनंत हल हैं तो $13 \alpha \beta$ बराबर है