यदि रैखिक समीकरण निकाय $x-2 y+k z=1$, $2 x+y+z=2$, $3 x-y-k z=3$ का एक हल $( x , y , z ), z \neq 0$, है, तो $( x , y )$ जिस रेखा पर स्थित है, उसका समीकरण है
$3x -4y -1 = 0$
$4x -3y -4 = 0$
$4x -3y -1 = 0$
$3x -4y -4 = 0$
$\left| {\,\begin{array}{*{20}{c}}{41}&{42}&{43}\\{44}&{45}&{46}\\{47}&{48}&{49}\end{array}\,} \right| = $
निम्नलिखित समीकरणों का $a$ के कितने मानों के लिए कम से कम दो अलग-अलग हल $(Solution)$ है ?
$a x+y=0$,$x+(a+10) y=0$
यदि $\alpha ,\beta \ne 0$ तथा $f\left( n \right) = {\alpha ^n} + {\beta ^n}$ तथा
$\left| {\begin{array}{*{20}{c}}3&{1 + f\left( 1 \right)}&{1 + f\left( 2 \right)}\\{1 + f\left( 1 \right)}&{1 + f\left( 2 \right)}&{1 + f\left( 3 \right)}\\{1 + f\left( 2 \right)}&{1 + f\left( 3 \right)}&{1 + f\left( 4 \right)}\end{array}} \right|\;$
$= K{\left( {1 - \alpha } \right)^2}$ ${\left( {1 - \beta } \right)^2}{\left( {\alpha - \beta } \right)^2}$ है, तो $K$ बराबर है
सारणिक $\left| {{\rm{ }}\begin{array}{*{20}{c}}1&2&3\\3&5&7\\8&{14}&{20}\end{array}} \right|$ का मान होगा
सारणिकों का प्रयोग करके $A (1,3)$ और $B (0,0)$ को जोड़ने वाली रेखा का समीकरण ज्ञात कीजिए और $k$ का मान ज्ञात कीजिए यदि एक बिंदु $D (k, 0)$ इस प्रकार है कि $\Delta\, ABD$ का क्षेत्रफल $3$ वर्ग इकाई है।