यदि समीकरण निकाय $2 x+3 y-z=5$ ; $x+\alpha y+3 z=-4$ ; $3 x-y+\beta z=7$के अनंत हल हैं तो $13 \alpha \beta$ बराबर है
$1110$
$1120$
$1210$
$1220$
समीकरण $\left| {\,\begin{array}{*{20}{c}}{3 - x}&{ - 6}&3\\{ - 6}&{3 - x}&3\\3&3&{ - 6 - x}\end{array}\,} \right| = 0$ का मूल है
$k \in R$ का वह मान, जिसके लिए रैखिक समीकरण निकाय
$3 x-y+4 z=3$
$x+2 y-3 z=-2$
$6 x+5 y+k z=-3$ के अनन्त हल है,
माना सभी $\mathrm{a} \in \mathrm{R}-\{0\}$, जिनके लिए रैखिक समीकरण निकाय $a x+2 a y-3 a z=1$
$ (2 a+1) x+(2 a+3) y+(a+1) z=2 $
$ (3 a+5) x+(a+5) y+(a+2) z=3$
का केवल एक हल है तथा अनंत हल है, के समुच्चय क्रमशः $S_1$ तथा $S_2$ है। तो
यदि $A =\left[\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right],$ जहाँ $0 \leq \theta \leq 2 \pi$ हो तो:
माना $\lambda$ एक ऐसी वास्तविक संख्या है जिसके लिए रैखिक समीकरण निकाय $x + y + z =6$; $4 x +\lambda y -\lambda z =\lambda-2$; $3 x +2 y -4 z =-5$ के अनन्त हल हैं। तो $\lambda$ जिस द्विघात समीकरण का एक मूल है, वह है