If the sum of first $n$ terms of an $A.P.$ is $cn(n -1)$ , where $c \neq 0$ , then sum of the squares of these terms is

  • A

    $c^2n^2(n+1)^2$

  • B

    $\frac{2}{3}c^2n(n-1)(2n-1)$

  • C

    $\frac{2}{3}c^2n(n+1)(2n+1)$

  • D

    $\frac{c^2 n^2}{3}(n+1)^2$

Similar Questions

The interior angles of a polygon with n sides, are in an $A.P.$ with common difference $6^{\circ}$. If the largest interior angle of the polygon is $219^{\circ}$, then $n$ is equal to______

  • [JEE MAIN 2025]

Let the coefficients of the middle terms in the expansion of $\left(\frac{1}{\sqrt{6}}+\beta x\right)^{4},(1-3 \beta x)^{2}$ and $\left(1-\frac{\beta}{2} x\right)^{6}, \beta>0$, respectively form the first three terms of an $A.P.$ If $d$ is the common difference of this $A.P.$, then $50-\frac{2 d}{\beta^{2}}$ is equal to.

  • [JEE MAIN 2022]

Let $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots$ be an $A.P.$ If $\frac{a_{1}+a_{2}+\ldots+a_{10}}{a_{1}+a_{2}+\ldots+a_{p}}=\frac{100}{p^{2}}, p \neq 10$, then $\frac{a_{11}}{a_{10}}$ is equal to :

  • [JEE MAIN 2021]

Let ${a_1},{a_2},.......,{a_{30}}$ be an $A.P.$, $S = \sum\limits_{i = 1}^{30} {{a_i}} $ and $T = \sum\limits_{i = 1}^{15} {{a_{2i - 1}}} $.If ${a_5} = 27$ and $S - 2T = 75$ , then $a_{10}$ is equal to

  • [JEE MAIN 2019]

Let $a_1, a_2, a_3 \ldots$ be in an $A.P.$ such that $\sum_{ k =1}^{12} a _{2 k -1}=-\frac{72}{5} a _1, a _1 \neq 0$. If $\sum_{ k =1}^{ n } a _{ k }=0$, then $n$ is:

  • [JEE MAIN 2025]