यदि किसी समांतर श्रेणी के $n$ वें पद का योगफल $3 n^{2}+5 n$ हैं तथा इसका $m$ वाँ पद $164$ है, तो $m$ का मान ज्ञात कीजिए।
Let $a$ and $b$ be the first term and the common difference of the $A.P.$ respectively.
$a_{m}=a+(m-1) d=164$ ............$(1)$
Sum of $n$ terms: $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
Here,
$\frac{n}{2}[2 a+n d-d]=3 n^{2}+5 n$
$\Rightarrow n a+n^{2} \cdot \frac{d}{2}-\frac{n d}{2}=3 n^{2}+5 n$
Comparing the coefficient of $n^{2}$ on both sides, we obtain
$\frac{d}{2}=3$
$\Rightarrow d=6$
Comparing the coefficient of $n$ on both sides, we obtain
$a-\frac{d}{2}=5$
$\Rightarrow a-3=5$
$\Rightarrow a=8$
Therefore, from $(1),$ we obtain
$8+(m-1) 6=164$
$\Rightarrow(m-1) 6=164-8=156$
$\Rightarrow m-1=26$
$\Rightarrow m=27$
Thus, the value of $m$ is $27 .$
यदि $x=\sum_{n=0}^{\infty} a^n, y=\sum_{n=0}^{\infty} b^n, z=\sum_{n=0}^{\infty} c^n$ है, जहां $a , b , c$ समान्तर श्रेणी में है और $| a |<1,| b | < 1$, $| c | < 1, abc \neq 0$ है तब
यदि किसी समांतर श्रेणी के $n$ पदों का योगफल $\left(p n+q n^{2}\right)$, है, जहाँ $p$ तथा $q$ अचर हों तो सार्व अंतर ज्ञात कीजिए।
माना कि $l_1, l_2, \ldots, l_{100}$ सार्वअंतर (common difference) $d_1$ वाली एक समांतर श्रेढ़ी (arithmetic progression) के क्रमागत पद (consecutive terms) हैं, एवं माना कि $w_1, w_2, \ldots, w_{100}$ सार्वअंतर (common difference) $d_2$ वाली एक दूसरी समांतर श्रेढ़ी (arithmetic progression) के क्रमागत पद है जहाँ $d_1 d_2=10$ है। प्रत्येक $i=1$, $2, \ldots, 100$ के लिए, माना कि $R_i$ एक आयत (rectangle) है जिसकी लम्बाई $l_i$, चौड़ाई $w_i$ एवं क्षेत्रफल $A_i$ है। यदि $A_{51}-A_{50}=1000$ है तब $A_{100}-A_{90}$ का मान . . . . . .है।
यदि किसी समान्तर श्रेणी का $9$ वाँ पद $35$ एवं $19$ वाँ पद $75$ है, तो इसका $20$ वाँ पद होगा
किसी समूह की $50$ सँख्याओं का समान्तर माध्य $38$ है। यदि समूह की दो संख्यायें $55$ तथा $45$ हटा दी जायें, तब शेष संख्याओं के समूह का समान्तर माध्य है