If the second, third and fourth term in the expansion of ${(x + a)^n}$ are $240, 720$ and $1080$ respectively, then the value of $n$ is
$15$
$20$
$10$
$5$
If the fourth term in the expansion of $\left(x+x^{\log _{2} x}\right)^{7}$ is $4480,$ then the value of $x$ where $x \in N$ is equal to
If the second, third and fourth terms in the expansion of $(x+y)^{\mathrm{n}}$ are $135$,$30$ and $\frac{10}{3}$, respectively, then $6\left(n^3+x^2+y\right)$ is equal to .............
In the expansion of $(1 + x)^{43}$ if the co-efficients of the $(2r + 1)^{th}$ and the $(r + 2)^{th}$ terms are equal, the value of $r$ is :
Let the coefficients of three consecutive terms in the binomial expansion of $(1+2 x)^{ n }$ be in the ratio $2: 5: 8$. Then the coefficient of the term, which is in the middle of these three terms, is $...........$.
The ratio of coefficient of $x^2$ to coefficient of $x^{10}$ in the expansion of ${\left( {{x^5} + {{4.3}^{ - {{\log }_{\sqrt 3 }}\sqrt {{x^3}} }}} \right)^{10}}$ is