જો બે સદીશોના સરવાળાનું મૂલ્ય એ તેમની બાદબાકીના મૂલ્ય બરાબર હોય, તો આ બે સદીશો વચ્ચેનો ખૂણો ($^o$ માં) કેટલો હશે?
$90$
$120$
$45$
$60$
વસ્તુ ઉપ૨ $\vec{F}_1$ અને $\vec{F}_2$ બળ પ્રવર્ત છે. એક બળનું મૂલ્ય બીજા બળ કરતા ત્રણ ગણું છે અને આ બે બળોનું પરિણામી બળ મૂલ્યમાં મોટા બળ જેટલું મળે છે. બળ $\vec{F}_1$ અને $\vec{F}_2$ વચ્ચેનો કોણ $\cos ^{-1}\left(\frac{1}{n}\right)$ છે. $|n|$ નું મૂલ્ય. . . . . . . . .થશે.
નીચેનામાંથી કઈ રાશિ/ રાશિઓ યામોક્ષોનાં અભિગમની પસંદગી પર આધાર રાખે છે?
$(a)$ $\vec{a}+\vec{b}$
$(b)$ $3 a_x+2 b_y$
$(c)$ $(\vec{a}+\vec{b}-\vec{c})$
બે સદિશો $\mathop A\limits^ \to $ અને $\mathop B\limits^ \to $ વચ્ચેનો ખૂણો $\theta $ કેટલો હોવો જોઈએ જેથી પરિણામી સદિશ $\mathop R\limits^ \to $ નું મૂલ્ય મહત્તમ મળે.
સદિશ $\vec{A}$ અને $\vec{B}$ એવા છે કે જેથી $|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$ થાય. બે સદિશ વચ્ચેનો ખૂણો કેટલો હશે?
બે એકમ સદિશનો સરવાળો,એકમ સદિશ હોય, તો તેના બાદબાકી સદિશનું મૂલ્ય કેટલું થાય?