If the line $3x -4y -k = 0 (k > 0)$ touches the circle $x^2 + y^2 -4x -8y -5 = 0$ at $(a, b)$ then $k + a + b$ is equal to :-
$20$
$22$
$-30$
$-28$
The number of tangents which can be drawn from the point $(-1,2)$ to the circle ${x^2} + {y^2} + 2x - 4y + 4 = 0$ is
If the tangent to the circle ${x^2} + {y^2} = {r^2}$ at the point $(a, b)$ meets the coordinate axes at the point $A$ and $B$, and $O$ is the origin, then the area of the triangle $OAB$ is
If a line passing through origin touches the circle ${(x - 4)^2} + {(y + 5)^2} = 25$, then its slope should be
Tangents are drawn from the point $(4, 3)$ to the circle ${x^2} + {y^2} = 9$. The area of the triangle formed by them and the line joining their points of contact is
If the line $y = \sqrt 3 x + k$ touches the circle ${x^2} + {y^2} = 16$, then $k =$