If the length of the latus rectum of the ellipse $x^{2}+$ $4 y^{2}+2 x+8 y-\lambda=0$ is $4$ , and $l$ is the length of its major axis, then $\lambda+l$ is equal to$......$

  • [JEE MAIN 2022]
  • A

    $72$

  • B

    $73$

  • C

    $74$

  • D

    $75$

Similar Questions

Let $E_1: \frac{x^2}{9}+\frac{y^2}{4}=1$ be an ellipse. Ellipses $E_i$ 's are constructed such that their centres and eccentricities are same as that of $E _1$, and the length of minor axis of $E _{ i }$ is the length of major axis of $E _{ i +1}( i \geq 1)$. If $A _{ i }$ is the area of the ellipse $E _{ i }$, then $\frac{5}{\pi}\left(\sum_{ i =1}^{\infty} A _{ i }\right)$, is equal to _____

  • [JEE MAIN 2025]

Slope of common tangents of parabola $(x -1)^2 = 4(y -2)$ and ellipse ${\left( {x - 1} \right)^2} + \frac{{{{\left( {y - 2} \right)}^2}}}{2} = 1$ are $m_1$ and $m_2$ ,then $m_1^2 + m_2^2$ is equal to

The area of the rectangle formed by the perpendiculars from the centre of the standard ellipse to the tangent and normal at its point whose eccentric angle is $\pi /4$  is :

A ray of light through $(2,1)$ is reflected at a point $P$ on the $y$ - axis and then passes through the point $(5,3)$. If this reflected ray is the directrix of an ellipse with eccentrieity $\frac{1}{3}$ and the distance of the nearer focus from this directrix is $\frac{8}{\sqrt{53}}$, then the equation of the other directrix can be :

  • [JEE MAIN 2021]

The equation of an ellipse whose eccentricity is $1/2$ and the vertices are $(4, 0)$ and $(10, 0)$ is