If the latus rectum of an ellipse be equal to half of its minor axis, then its eccentricity is

  • A

    $3/2$

  • B

    $\sqrt 3 /2$

  • C

    $2/3$

  • D

    $\sqrt 2 /3$

Similar Questions

The normal at $\left( {2,\frac{3}{2}} \right)$ to the ellipse, $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{3} = 1$ touches a parabola, whose equation is

  • [AIEEE 2012]

If tangents are drawn from the point ($2 + 13cos\theta , 3 + 13sin\theta $) to the ellipse $\frac{(x-2)^2}{25} + \frac{(y-3)^2}{144} = 1,$ then angle between them, is

The eccentricity of the ellipse $4{x^2} + 9{y^2} + 8x + 36y + 4 = 0$ is

Let $E_1$ and $E_2$ be two ellipses whose centers are at the origin. The major axes of $E_1$ and $E_2$ lie along the $x$-axis and the $y$-axis, respectively. Let $S$ be the circle $x^2+(y-1)^2=2$. The straight line $x+y=3$ touches the curves $S, E_1$ ad $E_2$ at $P, Q$ and $R$, respectively. Suppose that $P Q=P R=\frac{2 \sqrt{2}}{3}$. If $e_1$ and $e_2$ are the eccentricities of $E_1$ and $E_2$, respectively, then the correct expression$(s)$ is(are)

$(A)$ $e_1^2+e_2^2=\frac{43}{40}$

$(B)$ $e_1 e_2=\frac{\sqrt{7}}{2 \sqrt{10}}$

$(C)$ $\left|e_1^2-e_2^2\right|=\frac{5}{8}$

$(D)$ $e_1 e_2=\frac{\sqrt{3}}{4}$

  • [IIT 2015]

If $F_1$ and $F_2$ be the feet of the perpendicular from the foci $S_1$ and $S_2$ of an ellipse $\frac{{{x^2}}}{5} + \frac{{{y^2}}}{3} = 1$ on the tangent at any point $P$ on the ellipse, then $(S_1 F_1) (S_2 F_2)$ is equal to