If tangents are drawn from the point ($2 + 13cos\theta , 3 + 13sin\theta $) to the ellipse $\frac{(x-2)^2}{25} + \frac{(y-3)^2}{144} = 1,$ then angle between them, is

  • A

    $\frac{\pi }{6}$

  • B

    $\frac{\pi }{3}$

  • C

    $\frac{\pi }{2}$

  • D

    $\frac{2\pi }{3}$

Similar Questions

If the line $y = 2x + c$ be a tangent to the ellipse $\frac{{{x^2}}}{8} + \frac{{{y^2}}}{4} = 1$, then $c = $

If the points of intersection of two distinct conics $x^2+y^2=4 b$ and $\frac{x^2}{16}+\frac{y^2}{b^2}=1$ lie on the curve $y^2=3 x^2$, then $3 \sqrt{3}$ times the area of the rectangle formed by the intersection points is............................

  • [JEE MAIN 2024]

Tangents are drawn from the point $P(3,4)$ to the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$ touching the ellipse at points $\mathrm{A}$ and $\mathrm{B}$.

$1.$ The coordinates of $\mathrm{A}$ and $\mathrm{B}$ are

$(A)$ $(3,0)$ and $(0,2)$

$(B)$ $\left(-\frac{8}{5}, \frac{2 \sqrt{161}}{15}\right)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$

$(C)$ $\left(-\frac{8}{5}, \frac{2 \sqrt{161}}{15}\right)$ and $(0,2)$

$(D)$ $(3,0)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$

$2.$ The orthocentre of the triangle $\mathrm{PAB}$ is

$(A)$ $\left(5, \frac{8}{7}\right)$ $(B)$ $\left(\frac{7}{5}, \frac{25}{8}\right)$

$(C)$ $\left(\frac{11}{5}, \frac{8}{5}\right)$ $(D)$ $\left(\frac{8}{25}, \frac{7}{5}\right)$

$3.$ The equation of the locus of the point whose distances from the point $\mathrm{P}$ and the line $\mathrm{AB}$ are equal, is

$(A)$ $9 x^2+y^2-6 x y-54 x-62 y+241=0$

$(B)$ $x^2+9 y^2+6 x y-54 x+62 y-241=0$

$(C)$ $9 x^2+9 y^2-6 x y-54 x-62 y-241=0$

$(D)$ $x^2+y^2-2 x y+27 x+31 y-120=0$

 Give the answer question $1,2$ and $3.$

  • [IIT 2010]

Let the ellipse $E : x ^2+9 y ^2=9$ intersect the positive $x$ - and $y$-axes at the points $A$ and $B$ respectively Let the major axis of $E$ be a diameter of the circle $C$. Let the line passing through $A$ and $B$ meet the circle $C$ at the point $P$. If the area of the triangle which vertices $A, P$ and the origin $O$ is $\frac{m}{n}$, where $m$ and $n$ are coprime, then $m - n$ is equal to

  • [JEE MAIN 2023]

If the normal at any point $P$ on the ellipse cuts the major and minor axes in $G$ and $g$ respectively and $C$ be the centre of the ellipse, then