If the circles ${x^2} + {y^2} = 4,{x^2} + {y^2} - 10x + \lambda = 0$ touch externally, then $\lambda $ is equal to
$-16$
$9$
$16$
$25$
The locus of centre of a circle passing through $(a, b)$ and cuts orthogonally to circle ${x^2} + {y^2} = {p^2}$, is
If the circle ${x^2} + {y^2} + 6x - 2y + k = 0$ bisects the circumference of the circle ${x^2} + {y^2} + 2x - 6y - 15 = 0,$ then $k =$
The lengths of tangents from a fixed point to three circles of coaxial system are ${t_1},{t_2},{t_3}$ and if $P, Q$ and $R$ be the centres, then $QRt_1^2 + RPt_2^2 + PQt_3^2$ is equal to
The condition of the curves $a{x^2} + b{y^2} = 1$and $a'{x^2} + b'{y^2} = 1$ to intersect each other orthogonally, is
If the circles ${x^2} + {y^2} = {a^2}$and ${x^2} + {y^2} - 2gx + {g^2} - {b^2} = 0$ touch each other externally, then