If the centre of a circle which passing through the points of intersection of the circles ${x^2} + {y^2} - 6x + 2y + 4 = 0$and ${x^2} + {y^2} + 2x - 4y - 6 = 0$ is on the line $y = x$, then the equation of the circle is
$7{x^2} + 7{y^2} - 10x + 10y - 11 = 0$
$7{x^2} + 7{y^2} + 10x - 10y - 12 = 0$
$7{x^2} + 7{y^2} - 10x - 10y - 12 = 0$
$7{x^2} + 7{y^2} - 10x - 12 = 0$
The value of k so that ${x^2} + {y^2} + kx + 4y + 2 = 0$ and $2({x^2} + {y^2}) - 4x - 3y + k = 0$ cut orthogonally is
If the circles ${x^2} + {y^2} - 9 = 0$ and ${x^2} + {y^2} + 2ax + 2y + 1 = 0$ touch each other, then $a =$
Let $C_1$ be the circle of radius $1$ with center at the origin. Let $C_2$ be the circle of radius $\mathrm{I}$ with center at the point $A=(4,1)$, where $1<\mathrm{r}<3$. Two distinct common tangents $P Q$ and $S T$ of $C_1$ and $C_2$ are drawn. The tangent $P Q$ touches $C_1$ at $P$ and $C_2$ at $Q$. The tangent $S T$ touches $C_1$ at $S$ and $C_2$ at $T$. Mid points of the line segments $P Q$ and $S T$ are joined to form a line which meets the $x$-axis at a point $B$. If $A B=\sqrt{5}$, then the value of $r^2$ is
The points of intersection of circles ${x^2} + {y^2} = 2ax$ and ${x^2} + {y^2} = 2by$ are
The equation of a circle that intersects the circle ${x^2} + {y^2} + 14x + 6y + 2 = 0$orthogonally and whose centre is $(0, 2)$ is