If non-zero real numbers $b$ and $c$ are such that $min \,f\left( x \right) > \max \,g\left( x \right)$, where $f\left( x \right) = {x^2} + 2bx + 2{c^2}$  and $g\left( x \right) = {-x^2} - 2cx + {b^2}$$\left( {x \in R} \right)$; then $\left| {\frac{c}{b}} \right|$ lies in the interval

  • [JEE MAIN 2014]
  • A

    $\left( {0\,,\,\frac{1}{2}} \right)$

  • B

    $\left[ {\frac{1}{2}\,,\,\frac{1}{{\sqrt 2 }}} \right)$

  • C

    $\left[ {\frac{1}{{\sqrt 2 }}\,,\,\sqrt 2 } \right]$

  • D

    $\left( {\sqrt 2 \,,\,\infty } \right)$

Similar Questions

Consider a function $f:\left[ { - 1,1} \right] \to R$ where $f(x) = {\alpha _1}{\sin ^{ - 1}}x + {\alpha _3}\left( {{{\sin }^{ - 1}}{x^3}} \right) + ..... + {\alpha _{(2n + 1)}}{({\sin ^{ - 1}}x)^{(2n + 1)}} - {\cot ^{ - 1}}x$ Where $\alpha _i\ 's$ are positive constants and $n \in N < 100$ , then $f(x)$ is

If $f(a) = a^2 + a+ 1$ , then number of solutions of equation $f(a^2) = 3f(a)$ is

If $f(x + ay,\;x - ay) = axy$, then $f(x,\;y)$ is equal to

If $f(x) = \cos (\log x)$, then $f({x^2})f({y^2}) - \frac{1}{2}\left[ {f\,\left( {\frac{{{x^2}}}{2}} \right) + f\left( {\frac{{{x^2}}}{{{y^2}}}} \right)} \right]$ has the value

The sentence, What is your Name ? is