If $f(a) = a^2 + a+ 1$ , then number of solutions of equation $f(a^2) = 3f(a)$ is
$0$
$1$
$2$
more than $2$
If $\mathrm{R}=\left\{(\mathrm{x}, \mathrm{y}): \mathrm{x}, \mathrm{y} \in \mathrm{Z}, \mathrm{x}^{2}+3 \mathrm{y}^{2} \leq 8\right\}$ is a relation on the set of integers $\mathrm{Z},$ then the domain of $\mathrm{R}^{-1}$ is
If $f(x)$ satisfies the relation $f\left( {\frac{{5x - 3y}}{2}} \right) = \frac{{5f(x) - 3f(y)}}{2}\forall x,y\, \in \,R$ and $f(0)=1, f'(0)=2$ then the period of $sin(f(x))$ is
Domain of the function $f(x) = \frac{{{x^2} - 3x + 2}}{{{x^2} + x - 6}}$ is
If $x \in [0, 1]$, then the number of solution $(s)$ of the equation $2[cos^{-1}x] + 6[sgn(sinx)] = 3$ is (where $[.]$ denotes greatest integer function and sgn $(x)$ denotes signum function of $x$)-
The range of $f(x) = \cos (x/3)$ is