If in a geometric progression $\left\{ {{a_n}} \right\},\;{a_1} = 3,\;{a_n} = 96$ and ${S_n} = 189$ then the value of $n$ is
$5$
$6$
$7$
$8$
Suppose four distinct positive numbers $a_1, a_2, a_3, a_4$ are in $G.P.$ Let $b_1=a_1, b_2=b_1+a_2, b_3=b_2+a_3$ and $b_4=b_3+a_4$.
$STATEMENT-1$ : The numbers $\mathrm{b}_1, \mathrm{~b}_2, \mathrm{~b}_3, \mathrm{~b}_4$ are neither in $A.P$. nor in $G.P.$ and
$STATEMENT-2$ : The numbers $\mathrm{b}_1, \mathrm{~b}_2, \mathrm{~b}_3, \mathrm{~b}_4$ are in $H.P.$
If the sum of $n$ terms of a $G.P.$ is $255$ and ${n^{th}}$ terms is $128$ and common ratio is $2$, then first term will be
The $G.M.$ of roots of the equation ${x^2} - 18x + 9 = 0$ is
$x = 1 + a + {a^2} + ....\infty \,(a < 1)$ $y = 1 + b + {b^2}.......\infty \,(b < 1)$ Then the value of $1 + ab + {a^2}{b^2} + ..........\infty $ is