If force $[F],$ acceleration $[A]$ and time $[T]$ are chosen as the fundamental physical quantities. Find the dimensions of energy.
$[\mathrm{F}][\mathrm{A}][\mathrm{T}]$
$[\mathrm{F}][\mathrm{A}]\left[\mathrm{T}^{2}\right]$
$[F][\mathrm{A}]\left[\mathrm{T}^{-1}\right]$
$[\mathrm{F}]\left[\mathrm{A}^{-1}\right][\mathrm{T}]$
A physical quantity $\vec{S}$ is defined as $\vec{S}=(\vec{E} \times \vec{B}) / \mu_0$, where $\vec{E}$ is electric field, $\vec{B}$ is magnetic field and $\mu_0$ is the permeability of free space. The dimensions of $\vec{S}$ are the same as the dimensions of which of the following quantity (ies)?
$(A)$ $\frac{\text { Energy }}{\text { charge } \times \text { current }}$
$(B)$ $\frac{\text { Force }}{\text { Length } \times \text { Time }}$
$(C)$ $\frac{\text { Energy }}{\text { Volume }}$
$(D)$ $\frac{\text { Power }}{\text { Area }}$
Which of the following is not a dimensionless quantity?
A book with many printing errors contains four different formulas for the displacement $y$ of a particle undergoing a certain periodic motion:
$(a)\;y=a \sin \left(\frac{2 \pi t}{T}\right)$
$(b)\;y=a \sin v t$
$(c)\;y=\left(\frac{a}{T}\right) \sin \frac{t}{a}$
$(d)\;y=(a \sqrt{2})\left(\sin \frac{2 \pi t}{T}+\cos \frac{2 \pi t}{T}\right)$
$(a=$ maximum displacement of the particle, $v=$ speed of the particle. $T=$ time-period of motion). Rule out the wrong formulas on dimensional grounds.
A massive black hole of mass $m$ and radius $R$ is spinning with angular velocity $\omega$. The power $P$ radiated by it as gravitational waves is given by $P=G c^{-5} m^{x} R^{y} \omega^{z}$, where $c$ and $G$ are speed of light in free space and the universal gravitational constant, respectively. Then,