ऐसे कितने पूर्णांक $n$ हैं जिनके लिए समीकरण $3 x^3-25 x+n=0$ के तीन वास्तविक शून्यक हैं
$1$
$25$
$55$
अपरिमित
समीकरण $\sqrt{3 x^{2}+x+5}=x-3$, जहाँ $x$ वास्तविक है, का / के
यदि $x$ धनात्मक है तो $5 + 4x - 4{x^2}$ का अधिकतम मान होगा
यदि समीकरण, $x ^{2}+5(\sqrt{2}) x +10=0$, के $\alpha$ तथा $\beta$, $\alpha>\beta$ दो मूल है तथा $P_{n}=\alpha^{n}-\beta^{n}$,( प्रत्येक धन पूर्णांक $n$ के लिए) है, तो $\left(\frac{ P _{17} P _{20}+5 \sqrt{2} P _{17} P _{19}}{ P _{18} P _{19}+5 \sqrt{2} P _{18}^{2}}\right)$ का मान है ............. |
दो भिन्न बहुपद $f(x)$ और $g(x)$ इस प्रकार हैं: $f(x)=x^2+a x+2 ; \quad g(x)=x^2+2 x+a \text {. }$
यदि समीकरण $f(x)=0, g(x)=0$ का एक शून्यक साझा हो तो, समीकरण $f(x)+g(x)=0$ के शून्यकों का योग होगा :
$x$ के उन सभी वास्तविक मानों का योग जो समीकरण $\left(x^{2}-5 x+5\right)^{x^{2}+4 x-60}=1$ को संतुष्ट करते हैं, है: