स्प्रिंग् वाली घड़ी को चन्द्रमा की सतह पर ले जाने से यह
तेज चलेगी
धीमी चलेगी
कार्य नहीं करेगी
कोई परिवर्तन नहीं दिखाती
आरेख में दर्शाए अनुसार कमानी स्थिरांक $'2k'$ की दो सर्वसम कमानियाँ द्रव्यमान $m$ के किसी गुटके और दढ़ सपोर्ट से जुड़ी हैं। जब इस गुटके को इसकी साम्यावस्था से किसी एक ओर विस्थापित किया जाता है तो सरल आवर्त गति करने लगता है। इस निकाय के दोलन का आवर्तकाल होगा।
${k_1}$और ${k_2}$स्प्रिंग नियतांक वाली दो स्प्रिंगों को श्रेणीक्रम में जोड़ने पर संयोजन का तुल्य स्प्रिंग नियतांक होगा
एक $m$ द्रव्यमान को नगण्य द्रव्यमान के स्प्रिंग से लटकाया जाता है तथा निकाय $f_1$ आवृत्ति से दोलन करता है। यदि समान स्प्रिंग से $9$ मी. द्रव्यमान लटकाने पर दोलन की आवृत्ति $f_2$ है। $\frac{f_1}{f_2}$ का मान. . . . . . . हैं
चित्र $(a)$ में $k$ बल-स्थिरांक की किसी कमानी के एक सिरे को किसी दृढ़ आधार से जकड़ा तथा दूसरे मुक्त सिरे से एक द्रव्यमान $m$ जुड़ा दर्शाया गया है । कमानी के मुक्त सिरे पर बल $F$ आरोपित करने से कमानी तन जाती है । चित्र $(b)$ में उसी कमानी के दोनों मुक्त सिरों से द्रव्यमान $m$ जुड़ा दर्शाया गया है । कमानी के दोनों सिरों को चित्र में समान बल $F$ द्वारा तानित किया गया है ।
$(a)$ दोनों प्रकरणों में कमानी का अधिकतम विस्तार क्या है ?
$(b)$ यदि $(a)$ का द्रव्यमान तथा $(b)$ के दोनों द्रव्यमानों को मुक्त छोड़ दिया जाए, तो प्रत्येक प्रकरण में दोलन का आवर्तकाल ज्ञात कीजिए ।
दो द्रव्यमान $M _{ A }$ तथा $M _{ B }$ को दो तारों, जिनकी लम्बाइयां $L _{ A }$ तथा $L _{ B }$ है, से लटकाने पर सरल आवर्तगतियां करते है। यदि इनकी आवर्तियों में संबंध $f _{ A }=2 f _{ B }$ हो तो