If a spring has time period $T$, and is cut into $n$ equal parts, then the time period of each part will be

  • [AIEEE 2002]
  • A

    $T\sqrt n $

  • B

    $T/\sqrt n $

  • C

    $nT$

  • D

    $T$

Similar Questions

What provides the restoring force in the following cases ?

$(1)$ Compressed spring becomes force for oscillation.

$(2)$ Displacement of water in $U\,-$ tube,

$(3)$ Displacement of pendulum bob from mean position.

Two masses $M_{A}$ and $M_{B}$ are hung from two strings of length $l_{A}$ and $l_{B}$ respectively. They are executing SHM with frequency relation $f_{A}=2 f_{B}$, then relation

  • [AIPMT 2000]

Two particles of mass $m$ are constrained to move along two horizontal frictionless rails that make an angle $2\theta $ with respect to each other. They are connected by a spring with spring constant $k$ . The angular frequency of small oscillations for the motion where the two masses always stay parallel to each other (that is the distance between the meeting point of the rails and each particle is equal) is 

Let $T_1$ and $T_2$ be the time periods of two springs $A$ and $B$ when a mass $m$ is suspended from them separately. Now both the springs are connected in parallel  and same mass $m$ is suspended with them. Now let $T$ be the time period in this position. Then

Force constant of a spring is $K$ . If half part is detached then force constant of the remaining spring will be