Force constant of a spring is $K$ . If half part is detached then force constant of the remaining spring will be
$\frac{3}{4}K$
$\frac{K}{2}$
$2K$
$K$
Three masses $700g, 500g$ and $400g$ are suspended at the end of a spring a shown and are in equilibrium. When the $700g$ mass is removed, the system oscillates with a period of $3\,seconds$, when the $500g$ mass is also removed, it will oscillate with a period of .... $s$
A spring having with a spring constant $1200\; N m ^{-1}$ is mounted on a hortzontal table as shown in Figure A mass of $3 \;kg$ is attached to the free end of the spring. The mass is then pulled sideways to a distance of $2.0 \;cm$ and released. Determine
$(i)$ the frequency of oscillations,
$(ii)$ maximum acceleration of the mass, and
$(iii)$ the maximum speed of the mass.
The total spring constant of the system as shown in the figure will be
The scale of a spring balance reading from $0$ to $10 \,kg$ is $0.25\, m$ long. A body suspended from the balance oscillates vertically with a period of $\pi /10$ second. The mass suspended is ..... $kg$ (neglect the mass of the spring)
The force-deformation equation for a nonlinear spring fixed at one end is $F =4x^{1/ 2}$ , where $F$ is the force (expressed in newtons) applied at the other end and $x$ is the deformation expressed in meters