If a circle passes through the point $(a , b) \&$ cuts the circle $x^2 + y^2= K^2$ orthogonally, then the equation of the locus of its centre is :
$2ax + 2by - (a^2 + b^2 + K^2) = 0$
$2ax + 2by - (a^2 - b^2+ K^2) = 0$
$x^2 + y^2 - 3ax - 4by + (a^2 + b^2 - K^2) = 0$
$x^2 + y^2 - 2ax - 3by + (a^2 - b^2 - K^2) = 0$
If the circles ${x^2} + {y^2} - 2ax + c = 0$ and ${x^2} + {y^2} + 2by + 2\lambda = 0$ intersect orthogonally, then the value of $\lambda $ is
A variable line $ax + by + c = 0$, where $a, b, c$ are in $A.P.$, is normal to a circle $(x - \alpha)^2 + (y - \beta)^2 = \gamma$ , which is orthogonal to circle $x^2 + y^2- 4x- 4y-1 = 0$. The value of $\alpha + \beta + \gamma$ is equal to
A circle passes through the origin and has its centre on $y = x$. If it cuts ${x^2} + {y^2} - 4x - 6y + 10 = 0$ orthogonally, then the equation of the circle is
The centre of the smallest circle touching the circles $x^2 + y^2- 2y - 3 = 0$ and $x^2+ y^2 - 8x - 18y + 93 = 0$ is :
A circle $S$ passes through the point $(0,1)$ and is orthogonal to the circles $(x-1)^2+y^2=16$ and $x^2+y^2=1$. Then
$(A)$ radius of $S$ is $8$
$(B)$ radius of $S$ is $7$
$(C)$ centre of $S$ is $(-7,1)$
$(D)$ centre of $S$ is $(-8,1)$