If $Q= \frac{X^n}{Y^m}$ and $\Delta X$ is absolute error in the measurement of $X,$ $\Delta Y$ is absolute error in the measurement of $Y,$ then absolute error $\Delta Q$ in $Q$ is 

  • A

    $\Delta Q =  \pm \left( {n\frac{{\Delta X}}{X} + m\frac{{\Delta Y}}{Y}} \right)$

  • B

    $\Delta Q =  \pm \left( {n\frac{{\Delta X}}{X} + m\frac{{\Delta Y}}{Y}} \right)Q$

  • C

    $\Delta Q =  \pm \left( {n\frac{{\Delta X}}{X} - m\frac{{\Delta Y}}{Y}} \right)Q$

  • D

    $\Delta Q =  \pm \left( {n\frac{{\Delta X}}{X} - m\frac{{\Delta Y}}{Y}} \right)$

Similar Questions

The length of a cylinder is measured with a meter rod having least count $0.1\, cm$. Its diameter is measured with vernier calipers having least count $0.01\, cm$. Given that length is $5.0 \,cm$. and radius is $2.0 \,cm$. The percentage error in the calculated value of the volume will be ......... $\%$

In Ohm's experiment, the value of an unknown resistance were found to be $4.12\; \Omega, 4.08 \;\Omega, 4.22 \;\Omega$ and $4.14 \;\Omega$. Calculate absolute error and relative error in these measurement.

If the measurement errors in all the independent quantities are known, then it is possible to determine the error in any dependent quantity. This is done by the use of series expansion and truncating the expansion at the first power of the error. For example, consider the relation $z=x / y$. If the errors in $x, y$ and $z$ are $\Delta x, \Delta y$ and $\Delta z$, respectively, then

$\mathrm{z} \pm \Delta \mathrm{z}=\frac{\mathrm{x} \pm \Delta \mathrm{x}}{\mathrm{y} \pm \Delta \mathrm{y}}=\frac{\mathrm{x}}{\mathrm{y}}\left(1 \pm \frac{\Delta \mathrm{x}}{\mathrm{x}}\right)\left(1 \pm \frac{\Delta \mathrm{y}}{\mathrm{y}}\right)^{-1} .$

The series expansion for $\left(1 \pm \frac{\Delta y}{y}\right)^{-1}$, to first power in $\Delta y / y$, is $1 \mp(\Delta y / y)$. The relative errors in independent variables are always added. So the error in $\mathrm{z}$ will be $\Delta \mathrm{z}=\mathrm{z}\left(\frac{\Delta \mathrm{x}}{\mathrm{x}}+\frac{\Delta \mathrm{y}}{\mathrm{y}}\right)$.

The above derivation makes the assumption that $\Delta x / x<<1, \Delta \mathrm{y} / \mathrm{y} \ll<1$. Therefore, the higher powers of these quantities are neglected.

($1$) Consider the ratio $\mathrm{r}=\frac{(1-\mathrm{a})}{(1+\mathrm{a})}$ to be determined by measuring a dimensionless quantity a.

If the error in the measurement of $\mathrm{a}$ is $\Delta \mathrm{a}(\Delta \mathrm{a} / \mathrm{a} \ll<1)$, then what is the error $\Delta \mathrm{r}$ in

$(A)$ $\frac{\Delta \mathrm{a}}{(1+\mathrm{a})^2}$ $(B)$ $\frac{2 \Delta \mathrm{a}}{(1+\mathrm{a})^2}$ $(C)$ $\frac{2 \Delta \mathrm{a}}{\left(1-\mathrm{a}^2\right)}$ $(D)$ $\frac{2 \mathrm{a} \Delta \mathrm{a}}{\left(1-\mathrm{a}^2\right)}$

($2$) In an experiment the initial number of radioactive nuclei is $3000$ . It is found that $1000 \pm$ $40$ nuclei decayed in the first $1.0 \mathrm{~s}$. For $|\mathrm{x}| \ll 1$, In $(1+\mathrm{x})=\mathrm{x}$ up to first power in $x$. The error $\Delta \lambda$, in the determination of the decay constant $\lambda$, in $\mathrm{s}^{-1}$, is

$(A) 0.04$    $(B) 0.03$    $(C) 0.02$   $(D) 0.01$

Give the answer quetion ($1$) and ($2$)

  • [IIT 2018]

In an experiment to determine the acceleration due to gravity $g$, the formula used for the time period of a periodic motion is $T=2 \pi \sqrt{\frac{7(R-r)}{5 g}}$. The values of $R$ and $r$ are measured to be $(60 \pm 1) \mathrm{mm}$ and $(10 \pm 1) \mathrm{mm}$, respectively. In five successive measurements, the time period is found to be $0.52 \mathrm{~s}, 0.56 \mathrm{~s}, 0.57 \mathrm{~s}, 0.54 \mathrm{~s}$ and $0.59 \mathrm{~s}$. The least count of the watch used for the measurement of time period is $0.01 \mathrm{~s}$. Which of the following statement($s$) is(are) true?

($A$) The error in the measurement of $r$ is $10 \%$

($B$) The error in the measurement of $T$ is $3.57 \%$

($C$) The error in the measurement of $T$ is $2 \%$

($D$) The error in the determined value of $g$ is $11 \%$

  • [IIT 2016]

A body travels uniformly a distance of $(13.8 \pm 0.2) m$ in a time $(4.0 \pm 0.3) s$. Its velocity with error limits and percentage error is