यदि $1,\omega ,{\omega ^2}$ इकाई के घनमूल हैं, तब $\Delta = \left| {\,\begin{array}{*{20}{c}}1&{{\omega ^n}}&{{\omega ^{2n}}}\\{{\omega ^n}}&{{\omega ^{2n}}}&1\\{{\omega ^{2n}}}&1&{{\omega ^n}}\end{array}\,} \right|$ का मान होगा

  • [AIEEE 2003]
  • A

    $0$

  • B

    $1$

  • C

    $\omega $

  • D

    ${\omega ^2}$

Similar Questions

यदि $\Delta_{ r }=\left|\begin{array}{ccc} r & 2 r -1 & 3 r -2 \\ \frac{ n }{2} & n -1 & a \\ \frac{1}{2} n ( n -1) & ( n -1)^{2} & \frac{1}{2}( n -1)(3 n +4)\end{array}\right|$ हैं, तो $\sum_{ r =1}^{ n -1} \Delta_{ r }$ का मान

  • [JEE MAIN 2014]

माना कि दो $3 \times 3$ आव्यूह (matrices) $M$ तथा $N$ इस प्रकार है कि $M N=N M$ है। यदि $M \neq N^2$ तथा $M^2=N^4$ हो, तो

$(A)$ $\left( M ^2+ MN ^2\right)$ के सारणिक (determinant) का मान शून्य है।

$(B)$ एक ऐसा $3 \times 3$ शून्येतर (non-zero) आव्यूह $U$ है जिसके लिये $\left( M ^2+ MN ^2\right) U$ शून्य आव्यूह है।

$(C)$ $\left( M ^2+ MN ^2\right)$ के सारणिक मान $\geq 1$ है।

$(D)$ $3 \times 3$ आव्यूह $U$ जिसके लिये $\left( M ^2+ MN ^2\right) U$ शून्य आव्यूह है तो $U$ भी एक शून्य आव्यूह होगा।

  • [IIT 2014]

यदि $A = \left| {\,\begin{array}{*{20}{c}}{ - 1}&2&4\\3&1&0\\{ - 2}&4&2\end{array}\,} \right|$and $B = \left| {\,\begin{array}{*{20}{c}}{ - 2}&4&2\\6&2&0\\{ - 2}&4&8\end{array}\,} \right|$,तो $B$ का मान होगा

यदि शीर्ष $(2,-6),(5,4)$ और $(k, 4)$ वाले त्रिभुज का क्षेत्रफल $35$ वर्ग इकाई हो तो $k$ का मान है:

निकाय $(k + 1)x + 8y = 4k,$ $kx + (k + 3)y = 3k - 1$ के अनन्त हलों के लिये  $ k$  के मानों की संख्या होगी

  • [IIT 2002]