જો વર્તૂળો ${x^2} + {y^2} + 3x + 7y + 2p - 5 = 0$ અને ${x^2} + {y^2} + 2x + 2y - {p^2} = 0$ નાં છેદબિંદુઓ $P$ અને $Q$ હોય,તો $P,Q$ અને $ (1,1)$ માંથી પસાર થતા વર્તૂળ માટે:
$p $ ની એક સિવાયની બધીજ કિંમત માટે
$p$ ની બે સિવાયની બધીજ કિંમત માટે
$p$ ની એકજ કિંમત માટે
$p $ ની બધીજ કિંમત માટે
જો વર્તુળો ${x^2} + {y^2} + 2x + 2ky + 6 = 0$ અને ${x^2} + {y^2} + 2ky + k = 0$ લંબ્ચ્છેદી હોય તો $k$ મેળવો.
અહી $Z$ એ બધાજ પૃણાંક નો ગણ છે .
$\mathrm{A}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{Z} \times \mathbb{Z}:(\mathrm{x}-2)^{2}+\mathrm{y}^{2} \leq 4\right\}$
$\mathrm{B}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{Z} \times \mathbb{Z}: \mathrm{x}^{2}+\mathrm{y}^{2} \leq 4\right\} $ અને
$\mathrm{C}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{Z} \times \mathbb{Z}:(\mathrm{x}-2)^{2}+(\mathrm{y}-2)^{2} \leq 4\right\}$
જો $\mathrm{A} \cap \mathrm{B}$ થી $\mathrm{A} \cap \mathrm{C}$ કુલ સંબંધની સંખ્યા $2^{\mathrm{p}}$ હોય તો $\mathrm{p}$ ની કિમંત મેળવો.
રેખા $ x = 3 $ પરના કયા બિંદુએથી વર્તૂળ $ x^2 + y^2 = 8 $ પર દોરેલો સ્પર્શક કાટખૂણે હોય?
જો ચલિત રેખા $3x + 4y -\lambda = 0$ એવી મળે કે જેથી બે વર્તુળો $x^2 + y^2 -2x -2y + 1 = 0$ અને $x^2 + y^2 -18x -2y + 78 = 0$ એ વિરુધ્ધ બાજુએ રહે તો $\lambda $ ની શક્ય કિમતો .............. અંતરાલમાં મળે
આપેલ બે વર્તૂળો $x^2+ y^2 + ax + by + c = 0$ અને $ x^2 + y^2 + dx + ey + f = 0 $ પરસ્પર એકબીજાને લંબરૂપે ક્યારે છેદે ?