Check whether the following probabilities $P(A)$ and $P(B)$ are consistently defined $P ( A )=0.5$,  $ P ( B )=0.4$,  $P ( A \cap B )=0.8$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$P ( A )=0.5$,  $P ( B )=0.4$,  $P (A \cup B)=0.8$

It is known that if $E$ and $F$ are two events such that $E \subset F,$ then $P ( E ) \leq P ( F )$

Here, it is seen that $P (A \cup B)> P ( A )$ and $P (A \cup B)> P ( B )$

Hence, $P(A)$ and $P(B)$ are consistently defined.

Similar Questions

Let $A$ and $B$ be events for which $P(A) = x$, $P(B) = y,$$P(A \cap B) = z,$ then $P(\bar A \cap B)$ equals

Urn $A$ contains $6$ red and $4$ black balls and urn $B$ contains $4$ red and $6$ black balls. One ball is drawn at random from urn $A$ and placed in urn $B$. Then one ball is drawn at random from urn $B$ and placed in urn $A$. If one ball is now drawn at random from urn $A$, the probability that it is found to be red, is

  • [IIT 1988]

If $A$ and $B$ are two independent events, then $A$ and $\bar B$ are

Three coins are tossed simultaneously. Consider the event $E$ ' three heads or three tails', $\mathrm{F}$ 'at least two heads' and $\mathrm{G}$ ' at most two heads '. Of the pairs $(E,F)$, $(E,G)$ and $(F,G)$, which are independent? which are dependent ?

One bag contains $5$ white and $4$ black balls. Another bag contains $7$ white and $9$ black balls. A ball is transferred from the first bag to the second and then a ball is drawn from second. The probability that the ball is white, is