यदि $P(A \cup B) = 0.8$ तथा $P(A \cap B) = 0.3,$ तब $P(\bar A) + P(\bar B) = $
$0.3$
$0.5$
$0.7$
$0.9$
यदि $P\,({A_1} \cup {A_2}) = 1 - P(A_1^c)\,P(A_2^c)$ जहाँ $c$ पूरक के लिये है, तब घटनाएँ ${A_1}$ तथा ${A_2}$ हैं
यदि $A$ तथा $B$ दो ऐसी घटनाएँ हों कि $P\,(A \cup B)\, + P\,(A \cap B) = \frac{7}{8}$ तथा $P\,(A) = 2\,P\,(B),$ तो $P\,(A) = $
यदृच्छया चुने गये किसी लीप वर्ष में $53$ रविवार या $53$ सोमवार होने की प्रायिकता है
एक कक्षा के $60$ विद्यार्थियों में से $30$ ने एन. सी. सी. ( $NCC$ ), $32$ ने एन. एस. एस. $(NSS)$ और $24$ ने दोनों को चुना है। यदि इनमें से एक विद्यार्थी यादृच्छया चुना गया है तो प्रायिकता ज्ञात कीजिए कि
विद्यार्थी ने न तो एन.सी.सी. और न ही एन.एस.एस. को चुना है।
दो विद्यार्थियों अनिल और आशिमा एक परीक्षा में प्रविष्ट हुए। अनिल के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.05$ है और आशिमा के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.10$ है। दोनों के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.02$ है। प्रायिकता ज्ञात कीजिए कि
अनिल और आशिमा दोनों परीक्षा में उत्तीर्ण नहीं हो पाएगें।