If $f(x) = \frac{x}{{x - 1}}$, then $\frac{{f(a)}}{{f(a + 1)}} = $
$f( - a)$
$f\left( {\frac{1}{a}} \right)$
$f({a^2})$
$f\left( {\frac{{ - a}}{{a - 1}}} \right)$
The range of the function $f(x){ = ^{7 - x}}{\kern 1pt} {P_{x - 3}}$ is
If the function $f\,:\,R - \,\{ 1, - 1\} \to A$ defined by $f\,(x)\, = \frac{{{x^2}}}{{1 - {x^2}}},$ is surjective, then $A$ is equal to
Domain of the function $f(x) = \sqrt {2 - {{\sec }^{ - 1}}x} $ is
Let the sets $A$ and $B$ denote the domain and range respectively of the function $f(x)=\frac{1}{\sqrt{\lceil x\rceil-x}}$ where $\lceil x \rceil$ denotes the smallest integer greater than or equal to $x$. Then among the statements
$( S 1): A \cap B =(1, \infty)-N$ and
$( S 2): A \cup B=(1, \infty)$
The domain of the function $f(x) = \frac{{{{\sin }^{ - 1}}(3 - x)}}{{\ln (|x|\; - 2)}}$ is