Let the sets $A$ and $B$ denote the domain and range respectively of the function $f(x)=\frac{1}{\sqrt{\lceil x\rceil-x}}$ where $\lceil x \rceil$ denotes the smallest integer greater than or equal to $x$. Then among the statements
$( S 1): A \cap B =(1, \infty)-N$ and
$( S 2): A \cup B=(1, \infty)$
only $(S1)$ is true
both $(S1)$ and $(S2)$ are true
neither $(S1)$ nor $(S2)$ is true
only $(S2)$ is true
If $f\left( x \right) = {\left( {\frac{3}{5}} \right)^x} + {\left( {\frac{4}{5}} \right)^x} - 1$ , $x \in R$ , then the equation $f(x) = 0$ has
The domain of the function $f(x) = \frac{{{{\sin }^{ - 1}}(x - 3)}}{{\sqrt {9 - {x^2}} }}$ is
Let $E = \{ 1,2,3,4\} $ and $F = \{ 1,2\} $.Then the number of onto functions from $E$ to $F$ is
The value of $b$ and $c$ for which the identity $f(x + 1) - f(x) = 8x + 3$ is satisfied, where $f(x) = b{x^2} + cx + d$, are