જો $P \equiv (x,\;y)$, ${F_1} \equiv (3,\;0)$, ${F_2} \equiv ( - 3,\;0)$ અને $16{x^2} + 25{y^2} = 400$, તો $ P{F_1} + P{F_2}$ = .. . . .
$8$
$6$
$10$
$12$
ઉપવલય $9x^2 + 5y^2 - 30y = 0 $ ની ઉત્કેન્દ્રતા ....
ઉપવલય $\frac{{{x^2}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{9}\, = \,\,1$ની નાભિઓમાંથી પસાર થતું અને $(0, 3)$ કેન્દ્ર વાળા વર્તૂળની ત્રિજ્યા....
ઉપવલય $4{x^2} + 9{y^2} = 1$ પરના . . . . . બિંદુથી દોરવામાં આવેલ સ્પર્શકએ રેખા $8x = 9y$ ને સમાંતર થાય.
અનુપ્રસ્થ અક્ષોની લંબાઈ $2\ sin\ \theta$ ધરાવતો અતિવલય, એ ઉપવલય $3x^2 + 4y^2 = 12$ સાથે સમનાભિ હોય, તો તેનું સમીકરણ.....
ઉપવલય $4x^2 + 9y^2 - 36y + 4 = 0$ નો નાભિલંબની લંબાઈ મેળવો.