If the sum of squares of all real values of $\alpha$, for which the lines $2 x-y+3=0,6 x+3 y+1=0$ and $\alpha x+2 y-2=0$ do not form a triangle is $p$, then the greatest integer less than or equal to $\mathrm{p}$ is $.........$
$35$
$33$
$34$
$32$
The number of integers $x$ satisfying $-3 x^4+\operatorname{det}\left[\begin{array}{ccc}1 & x & x^2 \\ 1 & x^2 & x^4 \\ 1 & x^3 & x^6\end{array}\right]=0$ is equal to
The values of $\theta, \lambda$ for which the following equations $\sin \theta x - cos\theta y + (\lambda +1)z = 0$; $\cos\theta x + \sin\theta\, y - \lambda z = 0$;$ \lambda x +(\lambda + 1)y + \cos\theta z = 0$ have non trivial solution, is
If $a,b,c$ be positive and not all equal, then the value of the determinant $\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right|$ is
Let $\mathrm{A}(-1,1)$ and $\mathrm{B}(2,3)$ be two points and $\mathrm{P}$ be a variable point above the line $A B$ such that the area of $\triangle \mathrm{PAB}$ is $10$ . If the locus of $\mathrm{P}$ is $\mathrm{ax}+\mathrm{by}=15$, then $5 a+2 b$ is :
If ${\Delta _1} = \left| {\,\begin{array}{*{20}{c}}x&b&b\\a&x&b\\a&a&x\end{array}\,} \right|$ and ${\Delta _2} = \left| {\,\begin{array}{*{20}{c}}x&b\\a&x\end{array}\,} \right|$ are the given determinants, then