यदि $a,b,c$ असमान हों, तो इस बात का प्रतिबंध कि सारणिक $\Delta = \left| {\,\begin{array}{*{20}{c}}a&{{a^2}}&{{a^3} + 1}\\b&{{b^2}}&{{b^3} + 1}\\c&{{c^2}}&{{c^3} + 1}\end{array}\,} \right|$ का मान शून्य होगा
$1 + abc = 0$
$a + b + c + 1 = 0$
$(a - b)(b - c)(c - a) = 0$
इनमें से कोई नहीं
सारणिकों के गुणधर्मों का प्रयोग करके सिद्ध कीजिए :
$\left|\begin{array}{ccc}x+4 & 2 x & 2 x \\ 2 x & x+4 & 2 x \\ 2 x & 2 x & x+4\end{array}\right|=(5 x+4)(4-x)^{2}$
$\left| {\,\begin{array}{*{20}{c}}1&1&1\\{\cos (nx)}&{\cos (n + 1)x}&{\cos (n + 2)x}\\{\sin (nx)}&{\sin (n + 1)x}&{\sin (n + 2)x}\end{array}\,} \right|$ निर्भर नहीं करता है
माना कि $P=\left[a_1\right]$ एक $3 \times 3$ आव्यूह (matrix) है और $Q=\left[b_1\right]$, जहाँ $b_{\|}=2^{[H]} a_{\|}$जब $1 \leq i, j \leq 3$ है। यदि $P$ के सारणिक (determinant) का मान $2$ है तो आव्यूह $Q$ के सारणिक का मान निम्न है
सारणिक $\left| {\,\begin{array}{*{20}{c}}{265}&{240}&{219}\\{240}&{225}&{198}\\{219}&{198}&{181}\end{array}\,} \right|$ का मान है
यदि $\Delta = \left| {\,\begin{array}{*{20}{c}}a&b&c\\x&y&z\\p&q&r\end{array}\,} \right|$, तो $\left| {\,\begin{array}{*{20}{c}}{ka}&{kb}&{kc}\\{kx}&{ky}&{kz}\\{kp}&{kq}&{kr}\end{array}\,} \right|$=