If $2 \times {}^n{C_5} = 9\,\, \times \,\,{}^{n - 2}{C_5}$, then the value of $n$ will be
$7$
$10$
$9$
$5$
If $n \geq 2$ is a positive integer, then the sum of the series ${ }^{ n +1} C _{2}+2\left({ }^{2} C _{2}+{ }^{3} C _{2}+{ }^{4} C _{2}+\ldots+{ }^{ n } C _{2}\right)$ is ...... .
The least value of a natural number $n$ such that $\left(\frac{n-1}{5}\right)+\left(\frac{n-1}{6}\right) < \left(\frac{n}{7}\right)$, where $\left(\frac{n}{r}\right)=\frac{n !}{(n-r) ! r !}, i$
For $2 \le r \le n,\left( {\begin{array}{*{20}{c}}n\\r\end{array}} \right) + 2\,\left( \begin{array}{l}\,\,n\\r - 1\end{array} \right)$ $ + \left( {\begin{array}{*{20}{c}}n\\{r - 2}\end{array}} \right)$ is equal to
Total number of $6-$digit numbers in which only and all the five digits $1,3,5,7$ and $9$ appear, is