If $|{z_1} + {z_2}| = |{z_1} - {z_2}|$, then the difference in the amplitudes of ${z_1}$ and ${z_2}$ is
$\frac{\pi }{4}$
$\frac{\pi }{3}$
$\frac{\pi }{2}$
$0$
The moduli of two complex numbers are less than unity, then the modulus of the sum of these complex numbers
If $z = 3 + 5i,\,\,{\rm{then }}\,{z^3} + \bar z + 198 = $
Find the modulus and the argument of the complex number $z=-\sqrt{3}+i$
Let $z_1 = 6 + i$ and $z_2 = 4 -3i$. Let $z$ be a complex number such that $arg\ \left( {\frac{{z - {z_1}}}{{{z_2} - z}}} \right) = \frac{\pi }{2}$, then $z$ satisfies -
Let $z$ be a complex number such that $\left| z \right| + z = 3 + i$ (where $i = \sqrt { - 1} $). Then $\left| z \right|$ is equal to