If ${z_1}$ and ${z_2}$ are any two complex numbers then $|{z_1} + {z_2}{|^2}$ $ + |{z_1} - {z_2}{|^2}$ is equal to

  • A

    $2|{z_1}{|^2}\,|{z_2}{|^2}$

  • B

    $2|{z_1}{|^2} + \,2\,\,|{z_2}{|^2}$

  • C

    $|{z_1}{|^2} + \,|{z_2}{|^2}$

  • D

    $2|{z_1}|\,\,|{z_2}|$

Similar Questions

The modulus and amplitude of $\frac{{1 + 2i}}{{1 - {{(1 - i)}^2}}}$ are

If a complex number $z$ statisfies the equation $x + \sqrt 2 \,\,\left| {z + 1} \right|\,+ \,i\, = \,0,$ then $\left| z \right|$ is equal to

  • [JEE MAIN 2013]

For any two complex numbers ${z_1}$and${z_2}$ and any real numbers $a$ and $b$; $|(a{z_1} - b{z_2}){|^2} + |(b{z_1} + a{z_2}){|^2} = $

  • [IIT 1988]

If ${z_1},{z_2} \in C$, then $amp\,\left( {\frac{{{{\rm{z}}_{\rm{1}}}}}{{{{{\rm{\bar z}}}_{\rm{2}}}}}} \right) = $

If $\frac{{z - i}}{{z + i}}(z \ne - i)$ is a purely imaginary number, then $z.\bar z$ is equal to