$A =$ [$x:x$ એ $3$ નો ગુણિત છે ] અને $B =$ [$x:x$ એ $5$ નો ગુણિત છે ], તો $A -B$ એ . . . ($\bar A$ એ ગણ $A$ નો પૂરક ગણ દર્શાવે છે )
$\bar A \cap B$
$A \cap \bar B$
$\bar A \cap \bar B$
$\overline {A \cap B} $
સાબિત કરો કે જો $A \cup B=A \cap B$ હોય, તો $A=B$.
જો $A = \{1, 2, 3, 4, 5\}, B = \{2, 4, 6\}, C = \{3, 4, 6\},$ તો $(A \cup B) \cap C$ મેળવો.
જો $A \cap B = B,$ તો . .
જો $n(A) = 3$, $n(B) = 6$ અને $A \subseteq B$. તો $A \cup B$ માં રહેલ ઘટકો મેળવો.
વિધાન સત્ય છે કે અસત્ય તે જણાવો. તમારા જવાબની યથાર્થતા ચકાસો : $\{2,3,4,5\}$ અને $\{3,6\}$ પરસ્પર અલગગણ છે.