જો $X = \{ {8^n} - 7n - 1:n \in N\} $ અને $Y = \{ 49(n - 1):n \in N\} ,$ તો . . ..
$X \subseteq Y$
$Y \subseteq X$
$X = Y$
એકપણ નહીં.
જો $S = \{1, 2, 3, ….., 100\}$. જ્યાં $A$ માં રહેલા બધા ઘટકો નો ગુણાકાર યુગ્મ આવે એવા $S$ ના ખાલી ગણ ના હોય એવા ઉપગણો $A$ ની સંખ્યા મેળવો
ધારો કે $S = \{ x \in R:x \ge 0$ અને $2\left| {\sqrt x - 3} \right| + \sqrt x \left( {\sqrt x - 6} \right) + 6 = 0\} $ તો $S:$ . . .
જો $\bigcup \limits_{i=1}^{50} X_{i}=\bigcup \limits_{i=1}^{n} Y_{i}=T$ જ્યાં દરેક $X_{i}$ માં $10$ ઘટકો હોય અને દરેક $Y_{i}$ માં $5$ ઘટકો છે અને ગણ $T$ ના દરેક ઘટકમાં બરાબર $20$ ઘટકો ગણ $X_{i}$ ના અને બરાબર $6$ ઘટકો ગણ $Y_{i}$ ના હોય તો $n$ ની કિમત શોધો
ગણ $\left\{n \in N : 10 \leq n \leq 100\right.$ અને $3^n-3$ એ $7$ નો ગુણિત છે $\}$ ના ઘટકોની સંખ્યા $.........$ છે.
જો $\mathrm{A}=\{\mathrm{x} \in {R}:|\mathrm{x}-2|>1\}, \mathrm{B}=\left\{\mathrm{x} \in {R}: \sqrt{\mathrm{x}^{2}-3}>1\right\}$, $\mathrm{C}=\{\mathrm{x} \in f{R}:|\mathrm{x}-4| \geq 2\}$ અને ${Z}$ એ પૂર્ણાંક સંખ્યા ગણ છે તો $(A \cap B \cap C)^{c} \cap {Z}$ ના કુલ ઉપગણની સંખ્યા મેળવો.