જો ગણ $A$ માં આઢ કરતાં નાની યુગ્મ પ્રાકૃતિક સંખ્યા છે અને $B$ માં સાત કરતાં નાની અવિભાજય સંખ્યા હોય તો $A $થી $B$ પરના સંબંધની સંખ્યા મેળવો
${2^9}$
${9^2}$
${3^2}$
${2^{9 - 1}}$
જો સંબંધ $R$ એ ગણ $A$ પરનો સંબંધ છે કે જેથી $R = {R^{ - 1}}$, તો $R$ એ . . . .
જો સંબંધ ${R_1}$ એ ${R_1} = \{ (a,\,b)|a \ge b,\,a,\,b \in R\} $ દ્વારા વ્યાખ્યાયિત હોય તો ${R_1}$ એ . . . .
જો સંબંધ $R =\{(4, 5); (1, 4);(4, 6);(7, 6); (3, 7)\}$ હોય તો ${R^{ - 1}}oR$=
ધારો કે $\mathbb{N} \times \mathbb{N}$ પર એક સંબંધ $\mathrm{R}$ એ "( $\left.x_1, y_1\right) \mathrm{R}\left(x_2, y_2\right)$ તો અને તો જ $x_1 \leq x_2$ અથવા $y_1 \leq y_2$ " પ્રમાણે વ્યાખ્યાયિત કરેલ છે.
બે વિધાનો ધ્યાને લો:
($I$) $\mathrm{R}$ સ્વવાચક છે પરંતુ સંમિત નથી .
($II$) $R$ પરંપરિત છે
તો નીચેના પૈકી કયુ એક સાયું છે
કોઈ ચોક્કસ સમયે કોઈ એક નગરમાં વસતા મનુષ્યોના ગણ $A$ પર વ્યાખ્યાયિત સંબંધ $R =\{(x, y): x $ એ $y$ નો પિતા છે. $\} $ સ્વવાચક, સંમિત અથવા પરંપરિત સંબંધ છે કે નહિ તે નક્કી કરો ?