જો સંબંધ $R$ એ $A$ થી $B$ અને સંબંધ $S$ એ $B$ થી $C$ પર વ્યાખ્યાયિત હોય તો,સંબંધ $SoR$ એ . . .
$A $ થી $C$
$C$ થી $A$
અસ્તિત્વ નથી.
એકપણ નહીં.
જો $R$ અને $S$ એ ગણ $A$ પરના અરિકત સંબંધ છે તો આપેલ વિધાન પૈકી ... અસત્ય છે.
જો $A = \{a, b, c\}$ અને $B = \{1, 2\}$. સંબંધ $R$ એ ગણ $A$ થી ગણ $B$ પર વ્યાખ્યાયિત હોય તો $R$ એ . . . . સમાન થશે.
સંબંધ $R$ એ અરિક્ત ગણ $A$ પરનો સામ્ય સંબધ હોય તો $R$ એ . . . ગુણધર્મનું પાલન કરવું જોઇયે.
ધારો કે $A=\{2,3,6,8,9,11\}$ અને $B=\{1,4,5,10,15\}$, ધારો કે $R$ એ $A \times B$ પર ' $(a, b) R(c, d)$ તો અને તો જ $3 a d-7 b c$ બેકી સંખ્યા છે' પ્રમાણે વ્યાખ્યાયિત સંબંધ છે. તો સંબંધ $R$ :
જો ગણ $A = \{1, 2, 3\}, B = \{1, 3, 5\}$ આપેલ છે અને સંબંધ $R:A \to B$ પર વ્યાખ્યાયિત હોય કે જેથી $R = \{(1, 3), (1, 5), (2, 1)\}$. તો ${R^{ - 1}}$ મેળવો.