જો સંબંધ $R$  એ $A$  થી $B$ અને સંબંધ $S$ એ $B$ થી $C$ પર વ્યાખ્યાયિત હોય તો,સંબંધ $SoR$ એ  . . .

  • A

    $A $ થી $C$

  • B

    $C$ થી $A$

  • C

    અસ્તિત્વ નથી. 

  • D

    એકપણ નહીં.

Similar Questions

જો $R$ અને $S$ એ ગણ $A$ પરના અરિકત સંબંધ છે તો આપેલ વિધાન પૈકી ... અસત્ય છે. 

જો $A = \{a, b, c\}$ અને $B = \{1, 2\}$. સંબંધ $R$  એ ગણ $A$ થી ગણ $B$ પર વ્યાખ્યાયિત હોય તો $R$  એ  . . . . સમાન થશે.

સંબંધ $R$ એ અરિક્ત ગણ $A$ પરનો સામ્ય સંબધ હોય તો $R$ એ  . . .  ગુણધર્મનું પાલન કરવું જોઇયે.

ધારો કે $A=\{2,3,6,8,9,11\}$ અને $B=\{1,4,5,10,15\}$, ધારો કે $R$ એ $A \times B$ પર ' $(a, b) R(c, d)$ તો અને તો જ $3 a d-7 b c$ બેકી સંખ્યા છે' પ્રમાણે વ્યાખ્યાયિત સંબંધ છે. તો સંબંધ $R$ :

  • [JEE MAIN 2024]

જો ગણ $A = \{1, 2, 3\}, B  = \{1, 3, 5\}$ આપેલ છે અને સંબંધ $R:A \to B$ પર વ્યાખ્યાયિત હોય કે જેથી $R = \{(1, 3), (1, 5), (2, 1)\}$. તો ${R^{ - 1}}$ મેળવો.