If $A$ and $B$ are disjoint, then $n(A \cup B)$ is equal to
$n(A)$
$n(B)$
$n(A) + n(B)$
$n(A)\,.\,n(B)$
If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find
$C \cap D$
If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find
$C-D$
If $\mathrm{R}$ is the set of real numbers and $\mathrm{Q}$ is the set of rational numbers, then what is $\mathrm{R - Q} ?$
If $A =$ [$x:x$ is a multiple of $3$] and $B =$ [$x:x$ is a multiple of $5$], then $A -B$ is ($\bar A$ means complement of $A$)
Consider the sets $A$ and $B$ of $A=\{2,4,6,8\}$ and $B=\{6,8,10,12\}$ Find $A \cap B .$