જો મુક્ત અવકાશની પરમિટીવીટી $\varepsilon_0$ પ્રોટોનનો વિદ્યુતભાર $e$ સાર્વત્રિક ગુરૂત્વાકર્ષણ અચળાંક $G$ અને પ્રોટોનનું દળ $m_p$ હોય તો $\frac{e^2}{4 \pi \varepsilon_0 G m_p{ }^2}$ માટે
$\left[ M ^1 L ^1 T ^{-3} A ^{-1}\right]$
$\left[ M ^0 L ^0 T ^0 A ^0\right]$
$\left[ M ^1 L ^3 T ^{-3} A ^{-1}\right]$
$\left[ M ^{-1} L ^{-3} T ^4 A ^2\right]$
ધારો કે $[{\varepsilon _0}]$ એ શૂન્યાવકાશની પરમિટિવિટી અને $[{\mu _0}]$ એ શૂન્યાવકાશ ની પરમીએબીલીટી દર્શાવે છે. જો $M =$ દળ , $L =$ લંબાઈ , $T =$ સમય અને $I =$ વિદ્યુતપ્રવાહ, તો ....
નીચેનામાંથી કઈ પરિમાણરહિત રાશિ નથી?
જો ઝડપ $V$ , ક્ષેત્રફળ $A$ અને બળ $F$ ને મૂળભૂત રાશિ લેવામાં આવે તો યંગ મોડ્યુલસનું પરિમાણ શું થશે?
પરિમાણ વિશ્લેષણનો ઉપયોગ કરીને નીચેનામાંથી ક્યો સંબંધ તારવી શકાય ? [સંકેતોને તેમના સામાન્ય અર્થ દર્શાવે છે.]
$l$ લંબાઈ અને $r$ ત્રિજયાવાળી નળીમાંથી ટર્પેન્ટાઇલ તેલ વહે છે. નળીના બંને છેડેના દબાણનો તફાવત $P$ છે. તેલનો શ્યાનતાગુણાંક $\eta=\frac{P\left(r^{2}-x^{2}\right)}{4 v l}$ સૂત્રથી આપવામાં આવે છે, જયાં $v$ એ નળીના અક્ષની $x$ અંતરે તેલનો વેગ દર્શાવે છે. $\eta$ નું પારિમાણિક સૂત્ર શું થાય?