If $\frac{6}{3^{12}}+\frac{10}{3^{11}}+\frac{20}{3^{10}}+\frac{40}{3^{9}}+\ldots . .+\frac{10240}{3}=2^{ n } \cdot m$, where $m$ is odd, then $m . n$ is equal to
$15$
$14$
$13$
$12$
If $n$ geometric means between $a$ and $b$ be ${G_1},\;{G_2},\;.....$${G_n}$ and a geometric mean be $G$, then the true relation is
A $G.P.$ consists of an even number of terms. If the sum of all the terms is $5$ times the sum of the terms occupying odd places, then the common ratio will be equal to
The product of three geometric means between $4$ and $\frac{1}{4}$ will be
If ${(p + q)^{th}}$ term of a $G.P.$ be $m$ and ${(p - q)^{th}}$ term be $n$, then the ${p^{th}}$ term will be
In a geometric progression, if the ratio of the sum of first $5$ terms to the sum of their reciprocals is $49$, and the sum of the first and the third term is $35$ . Then the first term of this geometric progression is