If $n$ arithmetic means are inserted between a and $100$ such that the ratio of the first mean to the last mean is $1: 7$ and $a+n=33$, then the value of $n$ is

  • [JEE MAIN 2022]
  • A

    $21$

  • B

    $22$

  • C

    $23$

  • D

    $24$

Similar Questions

If $a,b,c$ are in $A.P.$, then $\frac{1}{{\sqrt a + \sqrt b }},\,\frac{1}{{\sqrt a + \sqrt c }},$ $\frac{1}{{\sqrt b + \sqrt c }}$ are in

Given sum of the first $n$ terms of an $A.P.$ is $2n + 3n^2.$ Another $A.P.$ is formed with the same first term and double of the common difference, the sum of $n$ terms of the new $A.P.$ is

  • [JEE MAIN 2013]

Let ${a_1},{a_2},\;.\;.\;.\;.,{a_{49}}$ be in $A.P.$ such that $\mathop \sum \limits_{k = 0}^{12} {a_{4k + 1}} = 416$ and ${a_9} + {a_{43}} = 66$. If $a_1^2 + a_2^2 + \ldots + a_{17}^2 = 140m,$ then $m = \;\;..\;.\;.\;.\;$

  • [JEE MAIN 2018]

Find the $20^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $a_{n}=\frac{n(n-2)}{n+3}$ 

If the ${p^{th}},\;{q^{th}}$ and ${r^{th}}$ term of an arithmetic sequence are $a , b$ and $c$ respectively, then the value of $[a(q - r)$ + $b(r - p)$ $ + c(p - q)] = $