If $\left\{a_{i}\right\}_{i=1}^{n}$ where $n$ is an even integer, is an arithmetic progression with common difference $1$ , and $\sum \limits_{ i =1}^{ n } a _{ i }=192, \sum \limits_{ i =1}^{ n / 2} a _{2 i }=120$, then $n$ is equal to
$48$
$96$
$92$
$104$
If ${a^{1/x}} = {b^{1/y}} = {c^{1/z}}$ and $a,\;b,\;c$ are in $G.P.$, then $x,\;y,\;z$ will be in
The sum of the first $20$ terms common between the series $3 +7 + 1 1 + 15+ ... ......$ and $1 +6+ 11 + 16+ ......$, is
If $\frac{1}{{p + q}},\;\frac{1}{{r + p}},\;\frac{1}{{q + r}}$ are in $A.P.$, then
Insert $6$ numbers between $3$ and $24$ such that the resulting sequence is an $A.P.$
If $\tan \left(\frac{\pi}{9}\right), x, \tan \left(\frac{7 \pi}{18}\right)$ are in arithmetic progression and $\tan \left(\frac{\pi}{9}\right), y, \tan \left(\frac{5 \pi}{18}\right)$ are also in arithmetic progression, then $|x-2 y|$ is equal to: